Several Matrix Euclidean Norm Inequalities Involving Kantorovich Inequality
نویسندگان
چکیده
منابع مشابه
Several Matrix Euclidean Norm Inequalities Involving Kantorovich Inequality
where λ1 ≥ · · · ≥ λn > 0 are the eigenvalues of A. It is a very useful tool to study the inefficiency of the ordinary least-squares estimate with one regressor in the linear model. Watson 1 introduced the ratio of the variance of the best linear unbiased estimator to the variance of the ordinary least-squares estimator. Such a lower bound of this ratio was provided by Kantorovich inequality 1....
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملA Note on Matrix Versions of Kantorovich–type Inequality
Some new matrix versions of Kantorovich-Type inequalities for Hermitian matrix are proposed in this paper. We consider what happens to these inequalities when the positive definite matrix is allowed to be positive semidefinite singular or indefinite.
متن کاملGeneralization on Kantorovich Inequality
In this paper, we provide a new form of upper bound for the converse of Jensen’s inequality. Thereby, known estimations of the difference and ratio in Jensen’s inequality are essentially improved. As an application, we also obtain an improvement of Kantorovich inequality.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2009
ISSN: 1029-242X
DOI: 10.1155/2009/291984